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Preface

The 36th European Workshop on Computational Geometry (EuroCG 2020) was held at
Universitdt Wirzburg, Wiirzburg, Germany, on March 16-18, 2020. EuroCG is an annual
workshop that combines a strong scientific tradition with a friendly and informal atmosphere.
The workshop is a forum where researchers can meet, discuss their work, present their
results, and establish scientific collaborations, in order to promote research in the field of
Computational Geometry, within Europe and beyond.

We received 94 submissions, which underwent a limited refereeing process by the program
committee in order to ensure some minimal standards and to check for plausibility. We
selected 85 submissions for presentation at the workshop. Three submissions were later
withdrawn (leading to gaps in the paper numbering at 2, 14, and 48). EuroCG does not
have formally published proceedings; therefore, we expect most of the results outlined here
to be also submitted to peer-reviewed conferences and/or journals. This book of abstracts,
available through the EuroCG 2020 web site, should be regarded as a collection of preprints.
In addition to the 82 contributed talks, this book also contains abstracts of the three invited
lectures, given by Erin Wolf Chambers, Otfried Cheong, and Monique Teillaud.

Many thanks to all authors, speakers, and invited speakers for their participation, and
to the members of the program committee and all external reviewers for their insightful
comments. We gratefully thank the German Research Foundation (DFG grant KI12477/1-1)
for making this event possible and for helping us to keep the registration fees low. Special
thanks to Bella Grigoryan, the members of the organizing committee, and the administration
at Universitdt Wiirzburg, for their work that made EuroCG 2020 possible.
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(Invited Talk) The Saga of the Skyline Points

Otfried Cheong!

1 SCALGO, Denmark, and KAIST, South Korea
otfried@kaist.airpost.net

Abstract

Skyline points or non-dominated points in a database are those points that are “best” in
at least one of their attributes. In spatial databases, interesting implicit attributes are the
distances to a given set of sites of interest. We present some history of the problem, and
then show how computational geometry helps to transform it into a question about certain
Voronoi diagrams with additive weights and a convex-distance function. Finally, we show how
to solve the problem for n data points and m sites of interest in time O((n + m) log(n + m)),
improving on all previous results that require time proportial to nm.

Biography

Otfried Cheong received his Ph.D. at FU Berlin in 1992. After holding positions at Utrecht
University, Postech, Hong Kong University of Science Technology, and TU Eindhoven, he
has been at KAIST since 2005. He is on the editorial board of 'Discrete Computational
Geometry’ and ’Computational Geometry: Theory Applications’, and was elected an ACM
Distinguished Scientist in 2016. He is currently on leave from KAIST to work with Scalgo
on water flow simulations.

36th European Workshop on Computational Geometry, Wiirzburg, Germany, March 16-18, 2020.



(Invited Talk) Triangulations in CGAL: To
Non-Euclidean Spaces... and Beyond!

Monique Teillaud?

1 INRIA Nancy - Grand Est, LORIA, France
monique.teillaud@inria.fr

Abstract

The talk will review some of the basic ideas underlying the design of the classic triangulation
packages in CGAL. Then it will present more recent work on the computation of Delaunay
triangulations of some flat tori and of the Bolza surface, and show how the CGAL basic
ideas could be extended. Triangulations are known to have many applications. The talk will
exhibit concrete uses of the various CGAL triangulation packages. Finally, future work and
its motivation will be mentioned.

Biography

Former student of the Ecole Normale Supérieure in Paris, holder of an Agrégation in
Mathematics and a PhD in Computer Science (“Towards dynamic randomized algorithms
in computational geometry”). Managing Editor of JoCG (the free and gratis Journal of
Computational Geometry), PC Chair of SoCG’08, Chair of the Computational Geometry
Steering Committee since 2016. Monique Teillaud has been involved in the CGAL project
since the end of the 90’s. She has co-authored several packages in the library. Her research
has focused on computing triangulations in non-Euclidean spaces for more than ten years.

36th European Workshop on Computational Geometry, Wiirzburg, Germany, March 16-18, 2020.



(Invited Talk) Quantifying Shape Using the
Medial Axis

Erin Wolf Chambers?

1 Saint Louis University, USA
erin.chambers@slu.edu

Abstract

The medial axis plays a fundamental role in shape matching and analysis, but is widely known
to be unstable to even small boundary perturbations. Methods for pruning the medial axis are
usually guided by some measure of significance, with considerable work done for both 2- and
3-dimensional shapes. Such significance measures can be used for identifying salient features,
and hence are useful for simplification, comparison, and alignment. In this talk, we will
present theoretical insights and properties of commonly used significance measures, focusing
on those in 2D and 3D that are both shape-revealing and topology-preserving, as well as being
robust to noise on the boundary. We’ll also discuss more recent work in progress on using
such measures to de-noise a shape and identify topologically and geometrically prominent
features. Finally, we will cover several applications of these measures and techniques to
real-world data sets.

Biography

Dr. Erin Wolf Chambers is a Professor at Saint Louis University in the Department of
Computer Science, with a secondary appointment in the Department of Mathematics. Her
research focus is on computational topology and geometry, with a more general interest in
combinatorics and combinatorial algorithms. Complementing this work, she is also active
in research projects to support and improve the culture and climate in computer science
and mathematics, as well as to try to improve broader STEM educational experiences at
all levels. She serves on the Computational Geometry Steering Committee and the Women
in Computational Topology Steering Committee, as well as being an editor for Journal of
Computational Geometry and for the Journal of Applied and Computational Topology. She
received her PhD in Computer Science from the University of Illinois at Urbana-Champaign
in 2008, and was a Visiting Research Professor at Saarland University in summer 2011.

36th European Workshop on Computational Geometry, Wiirzburg, Germany, March 16-18, 2020.



Expected Complexity of Routing in ®¢ and
Half-©¢ Graphs*

Prosenjit Bose!, Jean-Lou De Carufel?, and Olivier Devillers3

1 Carleton University, Ottawa, Canada jit@scs.carleton.ca
University of Ottawa, Ottawa, Canada jdecaruf@uottawa.ca

3  Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
Olivier.Devillers@inria.fr

—— Abstract

We study online routing algorithms on the Og-graph and the half-©¢-graph (which is equivalent
to a variant of the Delaunay triangulation). Given a source vertex s and a target vertex ¢ in the
Og-graph (resp. half-Og-graph), there exists a deterministic online routing algorithm that finds
a path from s to ¢ whose length is at most 2||st|| (resp. 2.89||st||) which is optimal in the worst
case [Bose et al., STAM J. on Computing, 44(6)]. We propose alternative, slightly simpler routing
algorithms that are optimal in the worst case and for which we provide an analysis of the average
routing ratio for the Og-graph and half-O¢-graph defined on a Poisson point process.

1 Introduction

The half-Og-graph or TD-Delaunay (Triangular-Distance Delaunay [1]) is the Delaunay
triangulation for the convex metric whose disk has the shape of an equilateral triangle.
The Og-graph gathers the two half-Og-graphs corresponding to two symmetric equilateral
triangles. Given such a graph, one may be interested in its spanning ratio, that is the worse
ratio between the length of a shortest path in the graph and the Euclidean length [6, 12],
algorithms to compute paths [11, 10, 9, 8] knowing the whole graph, or routing algorithms
that uses only local knowledge of the graph [5].

This paper has two main contributions. The first contribution consists of the design of
two new algorithms for routing in the half-©g-graph in the so called negative-routing case.
Our new routing algorithms come in two flavors: one is memoryless and the other uses
a constant amount of memory. These new negative-routing algorithms have a worst-case
optimal routing ratio but are simpler and more amenable to probabilistic analysis than the
known optimal routing algorithm [4]. We also provide a new point of view on routing [4] in
the half-©g-graph in the positive-routing case.

The second contribution is the analysis of the two new negative-routing algorithms and
of the positive-routing algorithm in a random setting, namely when the vertex set of the
Og-graph and half-Og-graph is a point set that comes from an infinite Poisson point process
X of intensity A. The analysis is asymptotic with A going to infinity, and gives the expected
length of the shortest path between two fixed points s and ¢ at distance one. Our results
depend on the position of ¢t with respect to s. We express our results both by taking the
worst position for ¢ and by averaging over all possible positions for ¢.

* This work has been supported by INRIA Associated team TRIP, NSERC and ANR Aspag (ANR-17-
CE40-0017).Full version: (3]

36th European Workshop on Computational Geometry, Wiirzburg, Germany, March 16-18, 2020.

This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



1:2 Expected Complexity of Routing in ©g and Half-Og Graphs
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Figure 1 Naive Og-routing terminates but its stretch is unbounded

S successor of s will
be in a smaller
hexagon centered
int

2 Routing in O4-graph and Half-O4-graph

Let a cone be the region in the plane between two rays originating from the same point,
referred to as the apex of the cone. The ©Og-graph is formally defined as follows. For each
point p, we split the plane around p into six cones defined by rays emanating from p making
an angle of 0, %, %”, m, %”,
is an upward vertical ray emanating from p is labeled C¥, and C?...CY are labeled in
counterclockwise order. Given two vertices p and ¢ with ¢ in C?, define the canonical triangle
T, to be the equilateral triangle formed by the intersection of C¥ and the half-plane that
contains p, has ¢ on its boundary, and whose boundary is a line perpendicular to the bisector
of CP. We call a canonical triangle T},, even if ¢ is in C? for even i and odd otherwise. An
edge exists in the ©g-graph between two vertices p and ¢ if T, is empty. The half-©¢-graph

and %” with the horizontal axis. The cone whose bisector

uses the same rays to define the cone boundaries except only half the cones are used to define
edges, namely only the even cones or only the odd cones. The even half-©g-graph is defined
using the neighbors of p in cones Cf, C¥, and C} (Fig. 2 illustrates an even half-Og-graph).
The even (resp. odd) cones in the even half-Og-graph are called positive (resp. negative)
and symmetrically for the odd half-©¢-graph.

To route from a vertex s to a vertex ¢, a simple naive routing algorithm in Gg-graph
consists of choosing as successor for s the one in the cone C; containing ¢ and then to iterate.
This procedure always terminates but may have an unbounded routing-ratio (Fig. 1).

For the even half-Og-graph Chew [7] provides a routing algorithm with a routing ratio of
2 when t is in a cone C with ¢ even. As a consequence, the stretch ratio of the half-O©4-graph
is 2 using the routing from ¢ to s when i is odd. Bose et al. [4] address the routing problem
with ¢ odd and provide an algorithm with routing ratio % ~ 2.89 which is optimal for any
constant-memory online routing algorithm [4]. Bonichon and Marckert [2] analyze the naive
O¢-routing for Poisson distributed point sets.

3 Two Basic Routing Building Blocks on the Half-Og-graph

We introduce forward routing and side routing two routing modes on the half-©¢-graph which
serve as building blocks for our routing algorithms that have optimal worst-case behaviour.
We consider the even half-Og-graph and for ease of reference, we color the cones Cy, Cy and
Cy blue, red, and green respectively.



P. Bose, J.-L. De Carufel, & O. Deuvillers 1:3

empty quilateral N blue forward path upper bound on the
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Figure 2 A TD-Delaunay triangulation (half-Og-graph).

3.1 Forward-Routing Phase

Forward-routing consists of only following edges defined by a specific type of cone (i.e., a cone
with the same color) until some specified stopping condition is met. For example, suppose
the specific cone selected for forward routing is the blue cone. Thus, when forward-routing is
invoked at a vertex x, the edge followed is xy where y is the vertex adjacent to x in x’s blue
cone. If the stopping condition is not met at g, then the next edge followed is yz where z is
the vertex adjacent to y in y’s blue cone. This process continues until a specified stopping
condition is met. A path produced by forward routing consists of edges of the same color
since edges are selected from one specific cone as illustrated in Fig. 2.

» Lemma 3.1. Suppose that forward-routing is invoked at a vertex s and ends at a vertex t.
The length of the path from s to t produced by forward-routing is at most the length of one
side of the canonical triangle Ts; which is % times the length of the orthogonal projection of

st onto the bisector of Cj.

Proof. This result follows from the fact that each edge along the path makes a maximum
angle of ¥ with the cone bisector and the path is monotone in the direction of this bisector. <

3.2 Side-Routing Phase in the Half-O4-graph

The side-routing phase is defined on the half-©g-graph by using the fact that it is the
TD-Delaunay triangulation, and thus planar. Consider a line ¢ parallel to one of the cone
sides. W.l.o.g., we will assume ¢ is horizontal. We call the side of the line that bounds even
cones the positive side of £. (For a horizontal line, the positive side is below ¢, for the lines
with slopes —v/3 and /3, respectively, the positive side is above the line.) Let s and ¢ be two

EuroCG’20



1:4 Expected Complexity of Routing in ©g and Half-Og Graphs

vertices below £ and A, As,...A; be an ordered sequence of consecutive triangles of the
TD-Delaunay triangulation intersecting ¢ such that s is the bottom-left vertex of A, and ¢
is the bottom-right vertex of A;. Note that B is a path in the half-©¢-graph. Side-routing
invoked at vertex s along ¢ stopping at ¢ consists of walking from s to ¢ along B (Fig. 3 for
an example).

» Lemma 3.2. Side-routing on the positive side of a line { parallel to a cone boundary
invoked at a vertex s and stopped at a vertex t in the half-Og-graph results in a path whose
length is bounded by twice the length of the orthogonal projection of st on £. This path only
uses edges of two colors and all vertices of the path have their successor of the third color on
the other side of £.

Proof. W.l.o.g., assume / is horizontal and the positive side is below ¢. Consider the triangles
A;, 1 <4 < j as defined above. The empty equilateral triangle V; circumbscribing A; has a
vertex of A; on each of its side by construction (V; are shown in grey in Fig. 3). If A; has
an edge of the path (i.e., below £) then the vertex on the horizontal side of V; is above the
line while the two others are below. Thus, such an edge of the path goes from the left to the
right side of V;. Based on the slopes of the edges of V;, we have the following:

—a— Fach edge on the path has a length smaller than twice its horizontal projection. Therefore,
summing the lengths of all the projections of the edges gives the claimed bound on the length.
—b— If the slope is negative (resp. positive), the path edge is green (resp. red).

—c— The blue successor of a vertex w on the lower sides of V; is above ¢ since the part of C¥
below ¢ is inside V; and thus contains no other points. Blue edges are not on the path. <«

3.3 Positive routing in the Half-Og-graph (and the O4-graph)

If t is in a positive cone of s, Bose et al. [4] (similar to Chew’s algorithm) proposed a
routing algorithm in the half-Og-graph which they called positive routing. This algorithm
can be rephrased in two phases: a forward-routing phase and a side-routing phase. The
forward-routing phase is invoked with source s and destination ¢. It produces a path from s
to the first vertex u outside the negative cone of ¢ that contains s. The side-routing phase is
invoked with source u and destination ¢ and finds a path along the boundary of this negative
cone. (Fig. 4-left). The stretch of such a path is proven to smaller than 2 [4]

4 Alternative Negative Routing Algorithms in the Half-O4-graph

In this section, we outline two alternatives to the negative routing algorithm described by
Bose et al. [4]. Our algorithms are a little simpler to describe, have the same worst-case
routing ratio, and are easier to analyze in the random setting. The lower bound of % ~ 2.89
[4] applies to our alternative negative routing algorithms.

4.1 Memoryless Routing

Case 1. If ¢ is in the positive cone C}, take one step of forward-routing towards ¢

Case 2. If t is in the negative cone C§ and the successor u of s in C7_; is outside T (red triangle
empty in Fig. 4-right), take one step of side-routing along the side of T;s crossed by su.

Case 3. If t is in the negative cone C7 and the successor u of s in C; is outside T}, (green
triangle empty in Fig. 4-right), take one step of side-routing along the side of T}s crossed
by su.
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This size is twice ||st'|.

Figure 3 A side path below the horizontal line £.

Case 4. If t is in the negative cone C} and both successors of s in C7_; and C},; are inside Ti,
(green and red triangle non empty in Fig. 4-right), take one step of forward-routing in
the direction of the side of Tis incident to ¢ closest to s (go to the green successor of s in
Fig. 4-right).

Beyond the presentation, our strategy differs from the one of Bose et al. in Case 4 where
Bose et al. follows a blue edge if one exists. We remark that, when we reach Case 3, we enter
a side-routing phase that will continue until ¢ is reached since a side-routing step ensures that
at the next iteration side-routing will also be applicable. The same argument holds in Case 2,
unless we reach a point s with both successors outside T}, in which case we follow the other
side of T;s. To summarize, if ¢ is in a positive cone of s, this routing algorithm will produce
the path described at Section 3.3. If ¢ is in a negative cone of s we use a forward phase in
the green triangle, until we reach a vertex u whose edge in the green triangle intersects Ty
(recall that we assume that the green triangle is the smaller one). At this point, we invoke
side-routing from u to ¢ along the boundary of Ty,.

» Lemma 4.1. Memoryless negative routing has a worst-case routing ratio of % ~ 2.89.

Proof. Assume w.l.o.g. s € Cf. Referring to Fig. 5-left, let w be the upper right vertex of
Tis, v be the orthogonal projection of u on tw and z its projection parallel to tw on sw.
By Lemma 3.1, the path from s to u has length bounded by ||sz|| and by Lemma 3.2, the
path from u to t has length bounded by 2||vt||. Combining the two paths, the length is

bounded by ||sz|| + 2|jvt|| < ||sw]|| + 2||wt|]. Thus the stretch is smaller than %
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t
Figure 4 Positive and negative routing schemes [4].
Defining £ = H;’ﬁ‘ll‘ the stretch can be expressed as a function £ ~~ ﬁ It attains its
7t(&-2
maximum value of % when ¢ = % coresponding to s and ¢ lie on a vertical line. |

4.2 Constant-Memory Negative Routing

We propose a second negative routing algorithm that has the same worst-case routing ratio,
but we will prove that it has a better average routing ratio. However, it is no longer
memoryless since it needs to remember the coordinates of one vertex, namely the source
of the path. Let z” be the intersection between Tjs and T closest to s. (Fig. 5-right).
The idea is to use side-routing from s along sz’ and, just before exiting the green triangle,
apply side-routing along x’’t. This routing algorithm is identical to the one in the previous
subsection, except that we replace Case 4 with the following, where u is the current vertex
and s is the origin of the path whose coordinares are kept in memory:

Case 4’ If t is in the negative cone C}* and both successors of v in Cj* | and C},, are inside Ty,

(green and red triangle non empty): take one step of side-routing along the line sx”.

forward phaseNg
! ’ g [
AC

Figure 5 For Lemmas 4.1 and 4.2
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» Lemma 4.2. Constant-memory negative routing has a worst-case routing ratio of % o~
2.89.

Proof. Assume w.l.o.g. s € Cf. Referring to the Fig. 5-right, let 2’ and = be the horizontal
and orthogonal projections of u on T,;, respectively, and v’ and v be the horizontal and
orthogonal projections of u on Tjs, respectively. By Lemma 3.2, the path from s to u
has length bounded by 2||sz|| and by Lemma 3.2 again, the path from wu to ¢t has length
bounded by 2|[vt||. Combining the two paths the length is bounded by 2||sz|| + 2||vt|| <
2|| sz’ | +2||="z || +2]|v"t|| = 2||wt||4+2||zz’]|. Since z is the orthogonal projection of u on the side
2’2" of the equilateral triangle a’2"v’, ||z2’| is smaller than the half side of the triangle z’2" v’

and we get a bound on the length of 2||wt||+2||za’|| < 2||wt|+ 25 ||z"v'|| < 2|jwt||+|sw|. <«

5 Probabilistic Analysis

» Theorem 5.1. Let X be a Poisson point process of intensity A\, s and t two points at unit
distance and ¢ the angle of st with the horizontal axis. The the limits of the expected routing
ratios of the different routing algorithms on the half-©¢-graph defined on X U {s,t}, as A

tends to co are given in the following table and graph (with T := ﬁ(?) In3+4)):

Routing E [routing ratio] (¢) | max,,E [routing ratio] | E[E [routing ratio]]
Positive routing 51 (singb + % cos qS) %n ~ 1.2160 27‘/571 ~ 1.1612
Constant-memory 37180 ¢ 371~ 1.4041 27 ~1.3408
Memoryless i51 (% sing — % cos (;5) %7'1 ~ 1.5800 6_7;/571 ~ 1.4306

wly P

Proof. See full paper [3] <
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—— Abstract

A trajectory is a sequence of time-stamped locations. Measurement uncertainty is an important
factor to consider when analysing trajectory data. We define an uncertain trajectory as a traject-
ory where at each time stamp the true location lies within an uncertainty region—a disk, a line
segment, or a set of points. In this paper we consider discrete and continuous Fréchet distance

between uncertain trajectories.

We show that finding the largest possible discrete or continuous Fréchet distance among all
possible realisations of two uncertain trajectories is NP-hard under all the uncertainty models
we consider. Furthermore, computing the expected discrete or continuous Fréchet distance is
#P-hard when the uncertainty regions are modelled as point sets or line segments. We also
study the setting with time bands, where we restrict temporal alignment of the two trajectories,
and give polynomial-time algorithms for largest possible and expected discrete and continuous
Fréchet distance for uncertainty regions modelled as point sets.

1 Introduction

Trajectory data is ubiquitous. Whether tracking animals or dissecting a football game, we need
to deal with automated analysis of measured trajectories. However, most existing approaches
do not take into account the inherent uncertainty that arises due to the measurement
procedure. In some settings this uncertainty is small on the scale of the analysis; in other
settings, however, meaningful results can only be obtained when dealing with such uncertainty
explicitly. In this paper, we aim to do that for a variety of uncertainty models when computing
Fréchet distance and discrete Fréchet distance.

There are many results on trajectory analysis: on simplification of trajectories [1, 14,
21, 22, 29]; on trajectory segmentation [3, 4, 6]; on clustering trajectories [8, 17]. There
are also many approaches to trajectory similarity [13, 25, 31], including (discrete) Fréchet
distance [5, 16, 20] and variants [15]. There is some work tackling uncertainty in computational
geometry [12, 24, 26, 27], including problems on moving points [10, 18].

Some authors suggest computing restricted versions of Fréchet distance and other distance
metrics using time bands [7, 23, 30], restricting the alignment of trajectories. This is mostly
useful when the trajectories are regularly sampled and are expected to be aligned in time, so
we can use some fixed-size band on indices of the trajectory points as proxy for timestamps.

* This abstract presents partial results from joint work with Chenglin Fan and Benjamin Raichel [9].
T Supported by the Netherlands Organisation for Scientific Research (NWO) under project no. 612.001.801.
¥ Supported by the Netherlands Organisation for Scientific Research (NWO) under project no. 628.011.005.

36th European Workshop on Computational Geometry, Wiirzburg, Germany, March 16-18, 2020.

This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Table 1 Summary of hardness results for the decision problems in this paper.

. L imprecise
indecisive . .
disks line segments
. UB | NP-complete NP-complete NP-complete
discrete FD
Exp #P-hard — #P-hard

UB | NP-complete NP-complete NP-complete
Exp #P-hard — —

FD

There is some work on similarity of uncertain trajectories. Buchin and Sijben [11]
study computing discrete Fréchet distance on uncertain trajectories with points defined by
probability distributions. Ahn et al. [2] model each uncertain point by a disk, and the real
location of a point may be any point in the disk. They compute the lowest possible discrete
Fréchet distance using a dynamic programming approach. They also stipulate that finding
largest possible Fréchet distance is hard; it is confirmed by Fan and Zhu [19] for the case of
thin rectangles as imprecision model and is further explored in this paper.

We focus on Fréchet distance and discrete Fréchet distance. We make a distinction
between indecisive points and imprecise points for location uncertainty, as explained in
Section 1.1. We only model measurement uncertainty, so we assume linear motion on a
straight line segment between two consecutive measurements. We consider upper bound
Fréchet distance and ezpected Fréchet distance between trajectories, which correspond to
the largest possible and expected Fréchet distance over every possible combination of real
locations of the trajectory. Our contributions are:

1. NP-hardness and #P-hardness results.! We show NP-hardness for the upper bound on
(discrete) Fréchet distance using simpler uncertainty regions and a simpler construction
than Fan and Zhu [19]. We show #P-hardness for the expected value of (discrete) Fréchet
distance in several settings. See Table 1 for details.

2. Algorithms for discrete and continuous Fréchet distance with Sakoe—Chiba time bands.
Previous results suggest that there is little room for positive algorithmic results. If the
trajectories are regularly sampled, or can be resampled appropriately at will, and are
expected to align in time, we can restrict the computation to a fixed-width time window
on indices of trajectory points, as explained in Section 3. We give algorithms to find,
given indecisive trajectories, the upper bound and expected (discrete) Fréchet distance
when constrained to Sakoe—Chiba bands of fixed width [30].

The results of this abstract are discussed further in the master thesis of A. Popov [28] and in

joint work with C. Fan and B. Raichel [9]. In the latter paper, we additionally investigate

the lower bound (continuous) Fréchet distance.

1.1 Notation

We denote a polygonal curve of length n on n points in d dimensions as P = (p1,pa,...,Pn).
A trajectory is a polygonal curve with timestamps associated to each point of the curve.
Whenever timestamps are not relevant, we use the terms interchangeably. We denote a
subtrajectory from point ¢ to j of curve P as P[i : j].

! Hardness class #P is a class of counting problems related to NP. For example, SAT (‘Is there a satisfying
assignment to a boolean formula?’) is an NP-complete problem, whereas #SAT (‘How many satisfying
assignments to a boolean formula are there?’) is a #P-complete problem.
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¢(2,4) at 10:12

¢(0,2) at 10:07
e(1,1) at 10:05

¢(0,0) at 10:01

Figure 1 Left: Trajectory data. Centre: Polygonal curve on the data. Right: Imprecise trajectory
with disks as imprecision regions and the real trajectory.

An uncertain point is commonly represented as a compact region H C R?. A realisation
of such a point A is one of the points from the region H. An indecisive point is a special
case of an uncertain point: it is a set of points H = {hq,...,hi}. Similarly, an imprecise

point is a compact connected region H C R?. We use disks or line segments as such regions.

Note that a precise point is a special case of an indecisive point and an imprecise point.
Consider a sequence of uncertain points H = (Hy, ..., H,), referred to as an uncertain
trajectory. A realisation P € H of an uncertain trajectory is a polygonal curve P =
(p1,...,Pn), where each p; is a realisation of the corresponding uncertain point H;. The
concept of uncertain trajectories is illustrated in Figure 1.
Extending the notation to uncertain trajectories H and V), we define the upper bound on
the (discrete) Fréchet distance under different possible realisations:

max _ max _
dir™ (1, V) = A@%a}%{@} dar (4, B), e (1, V) = A@%%{@V dr (4, B).

)

We define expected Fréchet distance d(]fF and dléE as the expected value of the Fréchet distance
if the realisations are picked uniformly at random, independently for each trajectory point.

2 Hardness Results

We do not discuss the construction; see the master thesis for full proofs [28]. It is possible to
provide a reduction from CNF-SAT to the decision problem for finding dj§** and dg'** under
different uncertainty models, establishing their NP-hardness. Furthermore, it is possible
to provide reductions from the counting version of CNF-SAT to the decision problem for
finding d . and di in some settings, establishing their #P-hardness. The construction has
two trajectories, one precise and one uncertain; every realisation of the uncertain trajectory
corresponds to a variable assignment in the CNF-SAT formula. We get two possible values of
Fréchet distance for each realisation and can distinguish satisfying assignments. Then dj**
tells us if the formula is satisfiable, and d % gives us the count of satisfying assignments.
The proofs using our construction extend to other compact uncertainty regions of the
same shape and size for the discrete Fréchet distance; the extension for the continuous Fréchet
distance seems possible, but is less obvious. The expected case is a lot more difficult due to

the complicated integral evaluations, so even for disks the results seem difficult to obtain.

The list of settings we consider is shown in Table 1.
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FF | FT | TT F F
TT | TF | FF T T | F F

—
—

Figure 2 Left: An indecisive and a precise trajectory. Middle: Distance matrix. ‘T T’ in the
bottom left cell means ||1—1%|| < e and |1 —1°|| < e. Right: Computing reachability matrix, column
by column. Note the two reachability vectors for the second column.

3 Algorithms with Time Bands

Here we use the Sakoe—Chiba band, which restricts aligning point k£ on one trajectory to
points k& + w on the other trajectory, for all k£ and some fixed w [30]. In some settings the
point indices act as proxy for timestamps, and the trajectories are expected to be aligned
in time, so this restriction is reasonable. We develop polynomial-time algorithms for the
restricted hard problems of the previous section on indecisive points.

3.1 Upper Bound Discrete Fréchet Distance

First of all, let us discuss a simple setting. Suppose we are given a trajectory V = (q1, ..., qn)
of n precise points and H = (P, ..., P,) of n indecisive points, each of them having ¢ options,
so for all i € {1,...,n} we have P; = {p},...,p’}. We would like to answer the following
decision problem: ‘If we restrict the couplings to a Sakoe—Chiba band of width w, is it true
that dip*(H, V) < e for some given threshold e > 0%’ We want to solve the decision problem
for the upper bound discrete Fréchet distance between a precise and an indecisive trajectory.

In a fully precise setting the discrete Fréchet distance can be computed using dynamic
programming [16]. We create a table where the rows correspond to the vertices of one
trajectory, say V, and columns correspond to the vertices of the other trajectory, say H.
Each table entry (7, j) then contains a TRUE or FALSE value indicating if there is a coupling
between V|1 : j] and H[1 : ] with maximum distance at most €. We use a similar approach.

Suppose we position H to go horizontally along the table, and V' to go vertically. Consider
an arbitrary column in the table and suppose that we fix the realisation of a part of H up to
the previous column. Then we can simply consider the new column ¢ times, each time picking
a different realisation for the new point on H, and compute the resulting reachability. As we
do this for the entire column at once, we can ensure consistency of our choice of realisation of
‘H. This procedure will give us a set of binary reachability vectors for the new column, each
vector corresponding to a realisation of a prefix of H. The reachability vector is a boolean
vector that, for the cell (i, ) of the table, states whether for a particular realisation A of
H[1 : i] the discrete Fréchet distance between A and V|1 : j] is below some threshold e.

An important observation is that we do not need to distinguish between the realisations
of trajectory prefixes that give the same reachability vector: once we start filling out the
next column, all we care about is the existence of some realisation leading to that particular
reachability vector. So, we can keep a set of binary vectors of reachability in the column.

This procedure was suggested for a specific realisation of a prefix of H. However, we can
also repeat this for each previous reachability vector, only keeping the unique results. As all
the realisation choices happen along H, by treating the table column-by-column we ensure
that we do not have issues with inconsistent choices. Therefore, repeating this procedure n
times, we will fill out the last column of the table. At that point, if any vector has FALSE in
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the top right cell, then there is some realisation A € H such that dqr(A4,V) > ¢, and hence
AW (H, V) > e; otherwise, dJF*(H, V) < e, as there are no ‘bad’ realisations.

In more detail, we use two tables, distance matrix D and reachability matrix R. First
of all, we initialise the distance matrix D and the reachability of the first column for all
possible locations of H;. Then we fill out R column-by-column. We take the reachability of
the previous column and note that any cell can be reached either with the horizontal step
or with the diagonal step. We need to consider various extensions of the trajectory H with
one of the / realisations of the current point: the distance matrix should allow the specific
coupling. Furthermore, assume we find that a certain cell is reachable; if allowed by the
distance matrix, we can then go upwards, marking cells above the current cell reachable,
even if they are not directly reachable with a horizontal or diagonal step. Then we just
remember the newly computed vector; we make sure to only remember distinct vectors.

We check if there is a realisation that yields FALSE in the last cell; then this realisation is
chosen by the upper bound, yielding FALSE. The computation is illustrated in Figure 2.

We can extend this approach to the setting where both trajectories are indecisive, so
instead of V' we have V = (Vi,...,V,), with, for each j € {1,...,n}, V; = {qjl-, .. .,qf}.

Suppose we pick a realisation for trajectory V. Then we can apply the algorithm we just
described. We cannot run it separately for every realisation of V; instead, note that the
part of the realisation that matters for column ¢ is the points from ¢ — w to ¢ + w, since any
previous or further points are outside the time band. We can fix these 2w + 1 points and
compute the column as before; we do so for each possible combination on these 2w + 1 points.

» Theorem 1. Suppose we are given two indecisive trajectories of length n with ¢ options per
indecisive point. Then we can compute the upper bound discrete Fréchet distance restricted
to a Sakoe—Chiba band of width w in time ©(4“n\/wl*).

3.2 Expected Discrete Fréchet Distance

To compute the expected discrete Fréchet distance with time bands, we need two observations:

1. For any two precise trajectories, there is a single threshold e where the answer to
the decision problem changes from TRUE to FALSE—a critical value. That threshold
corresponds to the distance between some two points on the trajectories.

2. We can modify our algorithm to store associated counts with each reachability vector,
obtaining the fraction of realisations that yield the answer TRUE for a given threshold ¢.

So, we can execute our algorithm for each of the critical values and obtain the cumulative

distribution function P(dqr(A, B) > €) for A, B € H,V following the uniform distribution.

Since the cumulative distribution function is a step function, we can compute d(]iEF.

» Theorem 2. Suppose we are given two indecisive trajectories H and V of length n with
£ options per indecisive point. Then we can compute the expected discrete Fréchet distance
when constrained to a Sakoe—Chiba band of width w in time ©(4“n?w?(??) in the worst case.

3.3 Continuous Fréchet Distance

We can adapt our time band algorithms to handle the continuous Fréchet distance. Instead
of the boolean reachability vectors, we use columns of free space cells, introduced by Alt and
Godau [5, 20], as illustrated in Figure 3. We store the reachability intervals on cell borders.
The specifics of handling intervals are very technical and can be found in the master
thesis [28]. The number of possible intervals is bounded; this way we get an algorithm that
runs in time polynomial in n. An extension to find the expected value is also possible.

EuroCG’'20
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(2,4)

(0,2)

(0,1)

(0,0) (2,0)

Figure 3 Left: Visualisation of Fréchet distance on precise trajectories. Right: Corresponding

free-space diagram. The highlighted intervals are propagated per column in the uncertain case. The

corresponds to the alignment depicted on the left.

» Theorem 3. Suppose we are given two indecisive trajectories of length n with ¢ options
per indecisive point. Then we can compute the upper bound Fréchet distance and the expected
Fréchet distance restricted to a Sakoe—Chiba band of fixed width w in time polynomial in n.
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—— Abstract
We provide a tight result for a fundamental problem arising from packing squares into a circular
container: The critical density of packing squares in a disk is § = 8/5x =~ 0.509. This implies that
any set of (not necessarily equal) squares of total area A < 8/5 can always be packed into a unit
disk; in contrast, for any € > 0 there are sets of squares of area 8/5 + ¢ that cannot be packed.
This settles the last case of packing circular or square objects into a circular or square container,
as the critical densities for squares in a square (1/2), circles in a square (7/3+v2 &~ 0.539) and
circles in a circle (1/2) have already been established. The proof uses a careful manual analysis,
complemented by a minor automatic part that is based on interval arithmetic. Beyond the
basic mathematical importance, our result is also useful as a blackbox lemma for the analysis of
recursive packing algorithms.

1 Introduction

Problems of geometric packing and covering arise in a wide range of natural applications.
They also have a long history of spawning many extremely demanding (and often still
unsolved) mathematical challenges. These difficulties are also notable from an algorithmic
perspective, as relatively straightforward one-dimensional variants of packing and covering
are already NP-hard; however, deciding whether a given set of one-dimensional segments can
be packed into a given interval can be checked by computing their total length. This simple
criterion is no longer available for two-dimensional, geometric packing or covering problems,
for which the total volume often does not suffice to decide feasibility of a set, making it
necessary to provide an explicit packing or covering.

We provide a provably optimal answer for a natural and previously unsolved case of tight
worst-case area bounds, based on the notion of critical packing density: What is the largest
number d, < 1, such that any set S of squares with a total volume of at most 6, can always
be packed into a disk C of area 1, regardless of the individual sizes of the elements in S7 We
show that the correct answer is 0, = 8/sx: Any set of squares of total area at most 8/5 can be
packed into a unit disk (with radius 1), and for any value A > 8/s, there are sets that cannot
be packed. This quantity is of mathematical importance, as it settles an open problem, as
well as of algorithmic interest, because it provides a simple criterion for feasibility. It also
settles the last remaining case of packing circular or square objects into a circular or square
container, see Figure 1 for an overview.

1.1 Related Work

Problems of square packing have been studied for a long time. The decision problem whether
it is possible to pack a given set of squares into the unit square was shown to be strongly
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(a) (b) ()

I Figure 1 Illustration of the worst-case optimal approaches and worst case instances for packing
(a) squares into a square with SHELF PACKING by Moon and Moser [7]. (b) disks into a square by
Fekete et al. [5]. (c) disks into a disk by Fekete et al. [4] (d) squares into a disk [this paper].

NP-complete by Leung et al. [6]. Already in 1967, Moon and Moser [7] proved that the
critical packing density for squares into a square is 1/2. As illustrated in Figure 1(a), this is
best possible. Demaine, Fekete, and Lang [1] showed in 2010 that deciding whether a given
set of disks can be packed into a unit square is NP-hard. Consequently, there is (most likely)
no deterministic polynomial-time algorithm to decide whether a given set of disks can be
packed into a given container. The problem of establishing the critical packing density for
disks in a square was posed by Demaine, Fekete, and Lang [1] and resolved by Morr, Fekete
and Scheffer [5, 8]. Using a recursive procedure for partitioning the container into triangular
pieces, they proved that the critical packing density of disks in a square is 7/(3+2v2). More
recently, Fekete et al. [4] established the critical packing density of 1/2 for packing disks into a
disk by employing a number of algorithmic techniques in combination with interval arithmetic.
Note that the main objective of this line of research is to compute tight worst-case bounds.
For specific instances, a packing may still be possible, even if the density is higher; this also
implies that proofs of infeasibility for specific instances may be trickier. However, the idea of
using the total item volume for computing packing bounds can still be applied. See the work
by Fekete and Schepers [2, 3], which shows how a modified volume for geometric objects can
be computed, yielding good lower bounds for one- or higher-dimensional scenarios.

'2 A Worst-Case Optimal Algorithm

The main result is a worst-case optimal algorithm for packing squares into a unit disk.

» Theorem 2.1. Every set of squares with a total area of at most 8/5 can be packed into a
disk with radius 1. This is worst-case optimal, i.e., for every X > 8/5 there exists a set of
squares with a total area of A that cannot be packed into the unit disk.

A proof of Theorem 2.1 consists of (i) a class of instances that provide the upper bound
of 8/5 and (ii) an algorithm that achieves the lower bound by packing any set of squares with
a total area of at most 8/5 into the unit disk.



S. P. Fekete, K. Juneja, P. Keldenich, L. Kleist, V. Krishna, and C. Scheffer 4:3

The upper bound is implied by any two squares with a side length of \/475 + ¢, for
arbitrary € > 0, see Figure 1(d): When placed in the unit disk, either of them must contain
the disk center in its interior, so both cannot be packed simultaneously.

In the following, we sketch a constructive proof for the lower bound by describing an
algorithm that can pack any instance with total area 8/5. Because our proof is constructive,
it yields a constant-factor approximation algorithm for the smallest disk in which a given set
of squares can be packed.

2.1 Description of the Algorithm

In the following, we consider a set of given squares with side lengths s1,...,s,. We pack
them in sequential order by decreasing size into the unit disk D, and assume without loss of
generality that s; > --- > s,. Our algorithm distinguishes three types of instances:

1. All squares are small, i.e., s; < 0.295.
2. The first four squares are fairly large, i.e., s1 < % and s 4+ s34+ 53 + 53 > & — .
3. All other cases.

S
B
doy

\
wojj0q

Figure 2 (a) Packing in case 1. (b) Packing in case 2. (c) The packing in the remaining cases is
a combination of TOP PACKING (top) and BOTTOM PACKING (bottom).

In the first case, we pack all but the first four squares into a large square container
by SHELF PACKING and each of the first four squares adjacent to one of the four sides as
illustrated in Figure 2(a). In the second case, we pack the first four squares into a central
square container, achieving high enough packed area that it suffices to pack the remaining

squares into a smaller subsquare with the worst-case packing density of squares into a square.

In the third case, we make extensive use of a refined shelf packing. Specifically, the largest
square in the third case is packed into D as high as possible, see Figure 2(c) and Figure 3 for
an illustration. The bottom of this square induces a horizontal split of disk into a top and a
bottom part, which are then packed by two subroutines called ToP PACKING and BoTTOM
PACKING as described in Section 2.2. This yields the following description.

1. If 51 < 0.295, place a square of side length X = 1.388 concentric into D and place one
square of side length X; = 0.295 to each side of X, see Figure 2(a).

For i = 1,2, 3,4, pack each s; into one of the squares of side length X; = 0.295.
For i > 5, use SHELF PACKING for packing s; into X.

2. If 51 < % and s% + 8% + 8% + SZ > %, let X71,..., X, be the four equally sized maximal
squares that fit into D and let be X the largest square that can be additionally packed
into D, see Figure 2(b).

For i = 1,2, 3,4, pack each s; into one of the squares of side length AX;.
For ¢ > 5, use SHELF PACKING for packing s; into X.
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3. Otherwise
Pack s as far as possible to the top into D.
For i > 2,
(3.1) if possible, use Top PACKING for packing s;,
(3.2) otherwise, use BorToM PACKING for packing s;.

Topr PACKING

/\s ,,,,,,,,,,

g

i)

EEEE O 0

00000 DOpEEEONE0OECO0O00CEOOEe 00 6 oa %
o

=

BorToM PACKING

Figure 3 Our algorithm packs squares in decreasing order. The largest (hatched) square is packed
as far as possible to the top, inducing a top and a bottom part, with the empty top space consisting
of two congruent pockets. Subsequent (white) squares are packed into these top pockets with Top
PACKING (which uses shelf packing as a subroutine) if they fit; if they do not fit, they are shown in
gray and packed into the bottom part with BoTTOM PACKING, which uses horizontal subcontainer
slicing, and vertical shelf packing within each slice.

2.2 Subroutines of Our Algorithm

In the following, we briefly describe the subroutines of our algorithm.

Refined Shelf Packing. In the classic shelf packing procedure by Moon and Moser [7],
the objects are packed in the greedy manner by decreasing size in rectangular subcontainers
called shelves; see top of Figure 1 (a). When an object does not fit in the current shelf, a new
shelf is opened; the height of a shelf is determined by the first object that it accommodates.
We use two modifications: (1) Parts of the shelf boundaries may be circular arcs; however,
we still have a supporting straight axis-parallel boundary and a second, orthogonal straight
boundary. (2) Our refined shelf packing uses the axis-parallel boundary line of a shelf as a
support line for packing squares; in case of a collision with the circular boundary, we may
move a square towards the middle of a shelf if this allows packing it.

Top Packing. The first square s; is packed as high as possible into the disk D, see
Figure 4 (a). Then the horizontal line ¢; through the bottom of s; cuts the container into
a top part that contains s;, with two congruent empty pockets Cy and C). left and right
of s1; each such pocket has two straight axis-parallel boundaries, b, and b,. We use refined
shelf packing with shelves parallel to the shorter straight boundary, as shown in Figure 4 (c)
and (d). If a square s; does not fit into either pocket, it is packed into the part below ¢;.

Bottom Packing. For packing a squares in the bottom part of D, SUBCONTAINER
SLICING subdivides the unused portion of the container disk into smaller pieces, by using
straight horizontal cuts analougous to shelf packing; see Figure 5 (Left). The height of a
subcontainer is determined by the first packed square. Within each subcontainer, (vertical)
REFINED SHELF PACKING is used; see Figure 3 for the overall picture. These shelves are
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Figure 4 (a) Packing si topmost into D. (b) The top part of D with the pockets C¢ and C,, and
the size o of the largest inscribed square. (c) A pocket C¢ where b, < by, resulting in horizontal
shelf packing. (d) A pocket C; where by > by, resulting in vertical shelf packing.

packed from the longer of the two horizontal cuts, i.e., away from the boundary that is closer
to the disk center; see Figure 5 (Right) for packing the subcontainer.

doy

el el
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\_/‘
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Figure 5 (Left) SUBCONTAINER SLICING partitions the lower part of D into subcontainers Cj,
with the height corresponding to the first packed square. (Right) Within each subcontainer,
SUBCONTAINER PACKING places squares into C; along vertical shelves, starting from the longer
straight cut of the subcontainer.

2.3 Correctness of the Algorithm

Similar to the argument by Moon and Moser for squares packed into a square container,
we use careful bookkeeping to prove that this algorithm only fails to pack a square in the
decreasing if the total area of all squares exceeds the critical bound. The analysis uses
an intricate combination of manual analysis and an automated analysis based on interval
arithmetic. Details are omitted due to lack of space.

3 Complexity
We present the idea of an hardness proof for packing squares into a disk.
» Theorem 3.1. [t is NP-hard to decide whether a given set of squares fits into a disk.

The proof uses a reduction from 3-PARTITION; it is somewhat similar to the one by Leung
et al. [6] for deciding whether a given set of squares fits into a given square container, and
the one by Demaine, Fekete, and Lang in 2010 [1] for deciding whether a give set of disks fits
into a given square container; see Figure 6 for an illustration.

Eight (gray) framing squares can only be packed by leaving a central rectangular pocket P
and some outside gaps. The numbers of the 3-PARTITION instance are mapped to a set of
(red) number squares of almost equal size, with small modifications of size ¢;, such that a
triple (i, 7, k) of (red) number squares fits into P if and only if ¢; +¢; + ¢ < 0, i.e., if there is
a feasible 3-PARTITION. For filling the gaps outside the framing squares, a set of (yellow and
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Figure 6 Illustration of the 3-PARTITION reduction.

blue) filler squares are constructed, so that no (red) number square can be packed outside P
if all filler squares are packed outside P. A detailed proof establishes the following claims.

1. Up to symmetries, the framing squares can only be packed in one canonical way, leaving
a central pocket P.

The filler squares fight tightly when packed in the canonical manner outside P.

When all filler squares are packed outside P, the number squares can only be packed
into P. This is possible if and only if there is a feasible 3-partition.

Packing a filler square inside P forces an unpackable gap preventing a feasible packing.
5. The overall construction can be realized with squares of sufficiently approximated edge
lengths of polynomial description size.

We omit details due to limited space, and the fact that the hardness proof is neither surprising
nor central to this paper.

4| Conclusions

We have established the critical density for packing squares into a disk, based on a number of
advanced techniques that are more involved than the ones used for packing squares or disks
into a square. Numerous questions remain open, in particular the critical density for packing
squares of bounded size into a disk. We are optimistic that our techniques will be useful.
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—— Abstract

‘We provide the solution for a fundamental problem of geometric optimization by giving a complete

characterization of worst-case optimal disk coverings of rectangles: For any A > 1, the critical

covering area A*(\) is the minimum value for which any set of disks with total area at least

A*(\) can cover a rectangle of dimensions A x 1. We show that there is a threshold value

Ao = /V7/2—1/4 =~ 1.035797..., such that for A < Xy the critical covering area A*()\) is

A*(N) =37 (% + 2+ %), and for A > )Xo, the critical area is A*(\) = (A2 + 2)/4; these

values are tight. For the special case A = 1, i.e., for covering a unit square, the critical covering
1957

area is Hzg ~ 2.39301.... The proof uses a careful combination of manual and automatic

analysis, demonstrating the power of the employed interval arithmetic technique.

‘1 Introduction

Given a collection of (not necessarily equal) disks, is it possible to arrange them so that
they completely cover a given region, such as a square or a rectangle? Covering problems
of this type are of fundamental theoretical interest, but also have a variety of different
applications, most notably in sensor networks, communication networks and wireless commu-
nication [22], surveillance, robotics, and even gardening and sports facility management, as
shown in Figure 1.

If the total area of the disks is small, it is clear that completely covering the region is
impossible. On the other hand, if the total disk area is sufficiently large, finding a covering

* This is an extended abstract of our paper Worst-Case Optimal Covering of Rectangles by Disks [15].
A video presenting the main result can be found at https://www.ibr.cs.tu-bs.de/users/fekete/
Videos/Cover_full.mp4 .

M Figure 1 An incomplete covering of a rectangle by disks: Sprinklers on a soccer field during a
drought. (Source: dpa [13].)
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seems easy; however, for rectangles with large aspect ratio, a major fraction of the covering
disks may be useless, so a relatively large total disk area may be required. The same issue is
of clear importance for applications: What fraction of the total cost of disks can be put to
efficient use for covering? This motivates the question of characterizing a critical threshold:
For any given A, find the minimum value A*(\) for which any collection of disks with total
area at least A*(\) can cover a rectangle of dimensions A x 1. What is the critical covering
area of A x 1 rectangles? In this paper we establish a complete and tight characterization
that generalizes to arbitrary rectangles by scaling and rotating.

1.1 Related Work

Like many other packing and covering problems, disk covering is typically quite difficult,
compounded by the geometric complications of dealing with irrational coordinates that arise
when arranging circular objects. This is reflected by the limitations of provably optimal
results for the largest disk, square or triangle that can be covered by n unit disks, and hence,
the “thinnest” disk covering, i.e., a covering of optimal density. As early as 1915, Neville [27]
computed the optimal arrangement for covering a disk by five unit disks, but reported a
wrong optimal value; much later, Bezdek [6, 7] gave the correct value for n = 5,6. As recently
as 2005, Fejes Téth [33] established optimal values for n = 8,9,10. Szalkai [32] gave an
optimal solution for a small special case (n = 3) of a general problem posed by Connelly in
2008, who asked how one should place n small disks of radius r to cover the largest possible
area of a disk of radius R > r. For covering arbitrary rectangles by n unit disks, Heppes and
Mellissen [20] gave optimal solutions for n < 5; Melissen and Schuur [24] extended this for
n = 6,7. See Friedman [19] for the best known solutions for n < 12. Covering equilateral
triangles by n unit disks has also been studied. Melissen [23] gave optimal results for n < 10,
and conjectures for n < 18; the difficulty of these seemingly small problems is illustrated
by the fact that Nurmela [28] gave conjectured optimal solutions for n < 36, improving
the conjectured optimal covering for n = 13 of Melissen. Carmi, Katz and Lev-Tov [11]
considered algorithms for covering point sets by unit disks at fixed locations. There are
numerous other related problems and results; for relevant surveys, see Fejes Téth [14] (Section
8), Fejes T6th [34] (Chapter 2), Brass, Moser and Pach [10] (Chapter 2) and the book by
Boroczky [9)].

Even less is known for covering by non-uniform disks, with most previous research focusing
on algorithmic aspects. Alt et al. [3] gave algorithmic results for minimum-cost covering of
point sets by disks, where the cost function is TS for some o > 1, which includes the
case of total disk area for o = 2. Agnetis et al. [2] discussed covering a line segment with
variable radius disks. Abu-Affash et al. [1] studied covering a polygon minimizing the sum of
areas; for recent improvements, see Bhowmick, Varadarajan and Xue [8]. Banhelyi, Palatinus
and Lévai [4] gave algorithmic results for the covering of polygons by variable disks with
prescribed centers.

The dual question of packing unit disks into a square has also attracted attention. For
n = 13, the optimal value for the densest square covering was only established in 2003 [18],
while the optimal value for 14 unit disks is still unproven; densest packings of n disks
in equilateral triangles are subject to a long-standing conjecture by Erdés and Oler from
1961 [29] that is still open for n = 15. Many authors have considered heuristics for circle
packing problems, see [31, 21] for overviews of numerous heuristics and optimization methods.
The best known solutions for packing equal disks into squares, triangles and other shapes
are pu